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The famous fictional detective Philo Vance once dabbled in the history of
mathematics. One of the keys to a particularly baffling murder, he told a bemused
policeman, was the fact that the mathematicians of the seventeenth century, unlike

their modern descendants, dealt only with well-behaved functions. “Neither Newton nor
Leibniz nor Bernoulli,” said the great sleuth, “ever dreamed of a continuous function
without a tangent” [4]. Vance’s legendary erudition was usually sound, and this case was
no exception. In the seventeenth century such mathematical bizarreries as continuous but
nowhere differentiable functions were indeed still far in the future.

The Law of Continuity
For no thinker of that age was the seeming regularity of the mathematical universe more
significant than for Leibniz. This pioneer contributor to the infinitesimal calculus was
also (of course) a great philosopher, whose metaphysical views were profoundly shaped
by his mathematical knowledge and experience. Mathematics was for him a body of
eternal truths describing an objectively known reality; moreover he felt, like many
before and after him, that the clarity of its ideas and the rigor of its arguments made
mathematics the paradigm of an exact and certain science. Hence he came to see it as a
model for inquiry in other fields, and as a source of potential insight into God’s creation
and governance of the world. In particular the continuity so conspicuous in the curves
and functions of contemporary mathematics underwrote for Leibniz one of the cardinal
principles of all his thought. In what follows I sketch the impact of a mathematically
conceived Law of Continuity on several diverse aspects of this protean thinker’s mature
philosophy.

He expressed this fundamental lex continui in various ways. In one informal statement
he identified it with the old saying that “nature makes no leaps,” adding by way of
elaboration that “we pass always from the small to the great, and the reverse, through
the medium” [1]. But his attempts to describe the Law of Continuity more rigorously
have a decidedly mathematical air. He wrote in 1687:

When the difference between two instances in a given series or that which is
presupposed [deux cas....in datis ou dans ce qui est posé] can be diminished until
it becomes smaller than any given quantity whatever, the corresponding difference
in what is sought or in their results [in quaesitis ou dans ce qui en resulte] must
of necessity also be diminished or become less than any given quantity whatever.
[2, p. 539]

This formulation, with its curious mix of French and Latin, hints instructively at the
power of good terminology. Lacking any equivalent of our “independent variable,”
Leibniz here lapsed into a vagueness which leaves his precise meaning open to debate.



But on its most natural interpretation the statement describes the continuity of functional
dependence. Indeed, short only of the crucial stipulation that can be made
arbitrarily small by taking sufficiently small,Leibniz here set forth the familiar

characterization of the continuity of a function nearly 150 years before its
rigorous enunciation by Bolzano (1817) and by Cauchy (1821). 

But the rule just quoted depends,said Leibniz,on a still “more general principle,”
namely that “as the given quantities are ordered, so the affected quantities are ordered
also [datis ordinatis etiam quaesita sunt ordinata]” [2, p. 539]. Again the utterance is
cryptic, but—as his subsequent illustrations help to make clear—Leibniz here envisaged
the kind of continuity in which (as we say) the limit of a convergent sequence inherits
the properties of the sequence’s terms. His favorite examples of such sequences drew on
both mathematics and physics:a succession of regular polygons progressively filling a
circle, a sequence of velocities decreasing toward zero. He recognized that in these and
other cases the limit does differ in obvious ways from the sequence’s terms,but he
tended to brush such distinctions aside:

Although it is not at all rigorously true that rest is a kind of motion... any more
than it is true that a circle is a kind of regular polygon... [these limits of sequences]
nevertheless have the same properties as if they were included in the series. 
[2, p. 887]

So far as I know, he admitted no exceptions to this striking generalization—even such
apparently stark counterexamples as the sequence positive terms approaching 
a nonpositive limit. It is intriguing to remember that ancient Greek thought,in this
context, declined to transfer qualitative properties from the terms of a sequence to 
the limit. Greek mathematics might seek an arbitrarily close approximation to,say,
the area of a circle by way of inscribed polygons,but Greek philosophy insisted that 
the curvilinear and the rectilinear are fundamentally distinct. Similarly the ancients
considered that even the slowest of motions is quite different,in nature and even in
value, from a state of absolute rest. Leibniz’stance must on the face of it seem much
less subtle, even perverse. But he had his own deep and sufficient reasons—as we 
shall see.

What bred in him so passionate a commitment to the continuous? Certainly the ultimate
wellsprings were religious and aesthetic:The order and predictability that he saw
everywhere in the nature of things,the absence of chaos and caprice, were gifts of a
benevolent God, and the source of the world’s perfection and beauty. But God’s design
and operation of the universe are (he felt) at bottom mathematical--“the sovereign
wisdom,the source of all things,acts as a perfect geometrician” [2, p. 539]. And
geometry is “but the science of the continuous” [3, p. 185]. Now this last declaration
had been a commonplace, ritualistically repeated, since antiquity—as Leibniz well
knew. But he gave it a new and characteristic twist. Traditionally, the statement had
aimed merely to contrast the intuitively obvious continuity (absence of gaps or jumps)
of geometrical entities like line segments with the discreteness of the objects of
arithmetic, the natural numbers. But Leibniz,surveying an enormously richer stock 
of geometrical objects than the Greeks ever knew, expanded the old saying into a
celebration of the unfailing continuity exhibited by all the curves and functions of
contemporary mathematics. In particular he exulted that the inherently reasonable
behavior of these objects made them amenable to the powerful new techniques of
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analytic geometry and the calculus. In the study of such curves,he wrote, “no single
instance can be adduced of any property suddenly arising or vanishing without the
possibility of our determining the intermediate transitions,the points of inflection and
singular points,with which to render the change explicable” [3, p. 185].

Continuity in Nature
And if mathematics presents no discontinuities,neither does the world of physical
experience, for indeed (said Leibniz) “the more one knows [Nature] the more geometric
one finds her”[2, p. 541]. The ubiquity of the Law of Continuity in geometry

soon informed me that it could not fail to apply also in physics. [For] in order for
there to be any regularity and order in Nature, the physical must be constantly in
harmony with the geometrical, and... the contrary would happen if wherever
geometry requires some continuation physics would allow a sudden interruption.
[3, p. 185]

On at least one occasion Leibniz flir ted briefly with the kind of spectacular natural
discontinuity now studied by chaos theorists:He pictured, as an example of a tiny cause
with immense effects,a small spark destroying an entire city by igniting a quantity of
gunpowder. But he dismissed such apparent anomalies as not really outside the general
rule [2, p. 541]. 

In time this universality of the continuous acquired for him the status of a great
overarching principle, one of the supreme and unchallengeable determinants of all his
thought. Continuity became not a fact to be verif ied in each new investigation but an
assumption made in advance and hence a source and test of other conclusions. Here then
is the clue to Leibniz’insistence, with counterexamples swept under the rug, that the
properties of a convergent sequence’s terms alwayscarry over to the limit:This he came
to regard as a necessary consequence of a higher and surer truth. “Since we can move
from polygons to a circle by a continuous change and without making a leap, it is also
necessary not to make a leap in passing from the properties of polygons to those of a
circle,” for “otherwise the law of continuity would be violated” [2, p. 887; emphasis
added]. In the same spirit he urged that any proposed description of physical phenomena
that ran counter to this omnipresent rule must be abandoned. He took pride in basing
solely on this criterion, no further argument being required, a telling rebuttal of one of
Descartes’ventures into mechanics. Descartes had laid it down that if two bodies B and
C, moving on a straight line with equal velocities,collide, then each will be reflected
with the velocity of approach. But Descartes also claimed that if B’s velocity exceeds
C’s,however slightly, then C will be reflected as before but B will continue in its
original direction. Leibniz saw that the passage from the first of these scenarios to the
second drew a large difference in outcome from a small variation of initial conditions,
and so he rejected the second of Descartes’conclusions as incompatible with the
guaranteed smoothness of nature’s working [2, p. 540]; cf. [3, p. 186].

In another context the continuity in the geometry of the conic sections inspired Leibniz
to one of his grandest visions. He pointed out that although ellipses and parabolas look
dissimilar, a parabola can be regarded as the limit obtainable from an ellipse by letting
one focus go to infinity. Obviously the passage from initial ellipse to final parabola
traverses a continuum of intervening ellipses. (Kepler (1604) had viewed all the conic
sections in just this spirit, in an important early statement of the principle of continuity.)
To Leibniz the ellipse-parabola relation suggested an analog in a realm seemingly
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remote—biology. He could believe, he wrote, that the world’s living creatures,though
visually as different from one another as ellipses and parabolas,form like these a
continuum. Any missing rungs in this scala naturae, any gaps between known species,
he proclaimed confidently, will be filled as naturalists discover new forms. Points of
seeming discontinuity, like the divide between plants and animals,are actually occupied
by organisms sharing traits with neighbors on both sides. These pronouncements placed
Leibniz in one of Europe’s oldest intellectual traditions,for the idea of a Great Chain of
Being hasbeen set forth by many pens since Plato’s time. But to this ancient theme he
added an extra variation, which perhaps only a mathematician would voice:“When the
essential determinations of one being approximate those of another, all the properties of
the former should also gradually approximate those of the latter” [3, pp. 186-188]. That
is, each biological character is a continuous function of position on the ladder of living
things. No one before Leibniz,and no one after him,ever conceived the Great Chain of
Being in such specifically mathematical terms.

The assumption of all-pervasive continuity colored the great philosopher’s widest
perspectives on the cosmic order. The Law of Continuity, applied to the temporal
sequence of the world’s events,entails that every physical occurrence can and must be
explained in terms of preceding states. And just as “there is a perfect continuity reigning
in the order of successive things,so there is a similar order” in the simultaneous; the
great law holds sway in space as in time [3, p. 186]. Continuity underwrites the
organicism so dominant in Leibniz’world view. Atomic theories of matter, which
postulate disjoint particles in otherwise empty space, cannot be valid, for they would
allow discontinuities in nature’s operations [3, pp. 188-189]. (Note again the status of
continuity as axiomatic in the sense of unchallengeably true, and as a basis for vital
deductions.) The universe, then,is a “plenum,” full everywhere, a spatial continuum.
Each of its parts affects and is affected by each of the others, in mutual accommodation
and influence—the “pre-established harmony” conferred by God on this best of all
possible worlds.

Obviously one cannot ascribe such conclusions wholly to Leibniz’experience of
mathematics. But that science, in his eyes the modus operandi of God’s creativity, often
served him as a guide to the shapes and limits of cosmic arrangements. How then might
his world view have come to terms with the later realization that freakish objects and
quirky behavior occur even in the apparently orderly realm of mathematics? By what
adjustment might his metaphysics reflect (say) the discovery of functions discontinuous
everywhere, or the insight that the sum of a convergent series of continuous functions
need not be continuous? Of course we cannot know. But as it stands,his philosophy
seems to echo an age of comparative mathematical innocence, when all the curves and
functions under study exhibited the reassuring regularity of the continuous.
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