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nyone who has studied calculus has probably solved the dialtisig ladder
problem of related rates fame:

A ladderL feet long leans against a vertical wall. If the base of the ladder is moved
outwards at the constant rate kofeet per second, how fast is the tip of the ladder
moving downward?

The standard solution model for this problem is to assume that the tip of the ladder slips
downward, maintaining contact with the wall until impact at ground level, so that if the
base and tip of the ladder at any titeve coordinate&(t), 0) and
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Figure 1. The standard falling ladder model.

(0, y(t)), respectively, the Pythagorean theorem gifes y? = L?; see Figure 1.
Differentiating with respect to timieyields the formula
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The paradox in this solution is that as the ladder nears the ggound, attains astronomical
proportions. In fact, ing] the student is lightheartedly asked to find (for a partidalar
andL) at what heighy the ladder’s tip is moving at light speed.

Of course, the resolution of this paradox is that the ladder’s tip leaves the wall at some
point in its descent. A few classroom experiments using a yardstick lend observational
support for this explanation, for as the base of a stick or ladder is moved away from the
wall at constant speed, at the moment of impact it appears as if the tip lands some small
distance from the wall, although the action transpires so quickly and catastrophically
that it is hard to be certain about what happens. A p&pear fhe physics literature

points out the flaw of using (1) and demonstrates the correct model for the falling

ladder. Our approach is somewhat simpler, making no use of the force exerted by the
wall on the ladder’s tip; we furthermore show how to numerically plot the path of the
ladder’s tip, from the time it leaves the wall until its crash landing.



Let's deteminey,, the citical height & which the ladier leaes the wvall and (1) ceases
to be \alid. We will do this ly examining the diferential equéions goveming these tw
different plysical situsions:the maving ladder suppaed by the wall and the
unsuppoted ladler behaing as a stik pendulunt

For the pendulunrecall tha the otational version of Nevton's second M of motion
stdes thaif a rigid body rotaes in a planelaut an axis thtamoves with unibrm
velocity, then the total taque &erted ty all the extemal forces on the badequals the
product of the moment of inga and the angular accedgon, where the toque and the
moment of inetia ale computed withespect to this mang axis.We gply this
principle for the axis wich passes tlough the point of contact (thevot) of the ladler
with the gound and Wich is pependicular to the plane inhich the ladler falls, since
this piot moves with constantelocity.

The ony forces on the &ely falling ladder ae the upward force from the gound & the
pivot point,which produces no taue and the gavitational force, which produces the
same togue T as a brce of mgnitudemgactingdownward & the center of mass of the
ladder, as indicéed in Fgure 2.Tha is,

L cos 6
a positie value since this tgue is countetockwise Fnding the moment of inéa
| of a unibrm rod with massn and lengthL about its endpoint is a standaexercise in
calculus or pisics,namey,

= 2 — 2
| fo X dx = 3IIIL.

The angular accelation is simpy —6, being the second destive with respect to time
of the angler — 6 between the gound and the later, measued countesiockwise,
Thus Nevton’s law for the flling ladder is%mLz(—B) = ZmgL cos 6, or

.+ 39
0 = oL Cos 0, (2)

which is \alid after the ladler loses contact with theall.
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Figure 2.A straight stik pendulum of length..

1 Some tats presents an altaedive falling ladder poblem in which an unértunae fellow clings
to the top of a lader Sud a poblem can be modeledytihe motion of a standépendulumpy
neglecting the mass of the (ligheight) ladler and taking the mass of the pendulum to be the
mass of the ma.his anaysis would be a suitale project for students.



On the other handvhen the lader is in contact with theail, y = L sin 6 and
differentigion yieldsy = L cos#9 = x6. By equdion (1)
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and another diérentiion yields
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T Lsn?e . L2Sind ¢’
which is \alid while the ladler maintains contact with theall:

Given specit values ofL andk, we can detenine the citical angleé, at which the
ladder loses contact with theal by finding the point of intesection of the gphs of
(2) and (4)plotting 6 versusé. Figure 3 (pae 52) illustetes this idea using thales
L = 41 ft, k = 10 ft/s,g = 32 ft/€, from [1]. From the gaph we see thieasf deceases
the ladler falls accoding to equion (4) until the tvo cuves meet &g, =~ 0.38, the
critical angle and theeafter the lader falls accoding to eqution (2). Tha is, up until
the citical angle the lader is held up the wall, but after6, it is free to behee as a
stick pendulum.
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Figure 3.The tansition betwen sliding andveinging.

Leaving L andk as paametes, we equée the ight sides of (2) and (4)hen simplify
yielding

Sint, = = (5)

If 2k2/(3gL) = 1, that is, if k = /3gL, equdion (5) is impossite, and ve condude
tha the tip of the lader pulls avay from the vall immedidely when the bottom lgns
to move avay with speed. Otherwisesincey, = L sin 6,
2k?L2
= 3 _—
Ye 39 (6)



It is interesting to ind V,, the acceleation of the tip of the lader & the citical height.
Differentiging (1) and simplifying yieldy = — (k2L?)/y?, which is \alid while the
ladder stgs in contact with the all. By (6),then,the accelation & the moment of
separation is

.. 3
Ye = _Eg (7)

To find the p&h of the ladler’s tip after it leges the \all, first obseve thd at the
moment of spartion the base ist&. = L cos .. Since the base mes avay a
constant speekl its distance fom the vall t seconds teer will bex, + kt, so the
distance fom the vall to the upper end of the Ider will bed = x, + kt — L cos 6
at this time Thus,if we sole the diferential equéon (2) to fnd 6(t), the pdh of the
ladder’s tip will be gven by the paametic equaions

d(t) = x. + kt — L cos 6(t), (8)
y(t) = Lsin o(t).

Figure 4 shas the tajectoy geneeted by Mathemdica, which numeically solves (2)
and plots the pametic cuive, with L = 41 ft, k = 10ft/s, g = 32 ft/s%. The initial
values ae

2
6(0) = 6, = arcsin 2/ ?%(L ~ 0.379428,  from (5),and

k
Lsin@

C

0(0)=6,=— ~ —0.658503, from (3).
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Figure 4.The pdh of the ladler’s tip.

Note thay. = L sin 6, = 15.19 ft in this exkample The solution is computed as long as
6(t) = 0, which tums out to belaout 0.42 secondnd a this moment of impact the
distance of the tip of the lddr from the vall isd = 1.32 ft.

To contast theseasults with a typical t@book solutionconsider the mblem in [1],
where the student is asll to fndy at the instant Wweny = 9 ft, with L andk as bebre.
Since the lader sparates flom the vall wheny = y, = 15.19 ft, we can use
Mathemadica’s numeically geneeted solution of the diérential equéion (2) to fnd
the corect \aluey =~ —35.49 ft/swheny = 9, rather than the alue of—44.44 as

given ly (1).



So wha should be the stas of the &lling ladder poblem in intoductoy calculus t&ts?
Here ae a £w possibilities:

* Remaore sut problems flom the t&tbooks #].

* Instead of askingoir y, ask br x for a ladler falling under thedrce of gavity, with
no friction & either endBut this is a lassic mehanics poblem, probably best left br
a physics couse

« Leave the poblems in the tet, but ensue tha the eercises haek < /3gL and ask
fory wheny is larger than they, of (6), so tha the standat gpproad rings true
physically. Mention as a mgmal note thathe standat model beaks dan once

y<y.orifk= /gL,

An interesting \anant tha avoids the spartation pahology has a 15dot ladler sliding
down a vall while its base slidest & ft/s acioss a 9-6ot-wide allg, bounded on the
other side # another wall [3]. Equaion (1) faithfully models this situ#on, and would
do so up to an alewidth of 14.4 éet.
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