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We obtain the solid which nowadays is commonly, although perhaps
inappropriately, known as Gabriel’s horn by revolving the hyperbola 
about the line as shown in Fig. 1. (See, e.g., [2], [5].) This name comes

from the archangel Gabriel who, the Bible tells us, used a horn to announce news that
was sometimes heartening (e.g. the birth of Christ in Luke 1) and sometimes fatalistic
(e.g. Armageddon in Revelation 8-11).

Figure 1. Gabriel’s Horn.

This object and some of its remarkable properties were first discovered in 1641 by
Evangelista Torricelli. At this time Torricelli was a little known mathematician and
physicist who was the successor to Galileo at Florence. He would later go on to invent
the barometer and make many other important contributions to mathematics and physics.
Torricelli communicated his discovery to Bonaventura Cavalieri and showed how he had
computed its volume using Cavalieri’s principle for indivisibles. Remarkably, this
volume is finite! This result propelled Torricelli into the mathematical spotlight, gave
rise to many related paradoxes [3], and sparked an extensive philosophical controversy
that included Thomas Hobbes, John Locke, Isaac Barrow and others [4].

This solid is a favorite in many calculus classes because its volume can be readily
computed via the method of disks:
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The seeming paradox of an infinite solid with a finite volume becomes even more
striking when one considers its surface area. The standard method for computing areas
of surfaces of revolution gives

This last integral cannot be evaluated readily, although with the aid of a computer
algebra system we find

In lieu of this,typically we estimate so

Hence, Gabriel’s horn is an infinite solid with finite volume but infinite surface area!

Although Gabriel’s horn is an engaging and appropriate example for second semester
calculus,analysis of its remarkable features is complicated by two factors. First,many
of the new calculus curricula do not include areas of surfaces of revolution. Second, the
beauty of the paradox is often obscured by an integral estimate that most students find
spurious at best.

In an effort to alleviate these factors,as well as to find an example accessible to less
advanced students,we can use a discrete analogue of Gabriel’s horn to illustrate the
same paradox. To construct it we can replace the function with a step function.
Let 

Revolving the graph of f about the line we obtain the solid of revolution shown in
Fig. 2. Notice that, when stood on end, it appears to be a cake with infinitely many
layers.
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Figure 2. Gabriel’s Wedding Cake

As each layer is simply a cylinder, the volume and surface area of the solid can
be readily computed. The nth layer has volume so the total volume of the cake
is

This series converges. Calculus students will recognize the series as a p-series with
Less advanced students can see that the series converges by comparison:

Using Euler’s remarkable result that the sum of the series is [1],

one can even obtain an exact result:

The surface area is formed by the annular tops and the lateral sides of each layer. The
surface area of the nth annular top is so the total area of the
annular tops is given by the telescoping series

Notice this result is obvious if one “collapses”the layers since the resulting top layer
will be a complete disk of radius one. The surface area of the nth lateral side is

so the total lateral surface area is 
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This is the harmonic series,among the most important of all the infinite series,
which diverges.

Thus,this solid illustrates essentially the same paradox as Gabriel’s horn: an infinite
solid with finite volume and infinite surface area. In other words:a cake you can eat, but
cannot frost.

Regarding a name for this new solid, Gabriel’s wedding cake seems appropriate for
physical and genelogical reasons. In addition, it seems a bit refreshing since weddings
are so unabashedly joyous,and the connotations of the horn have often imposed a heavy
burden on Gabriel.
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